82 research outputs found

    Assembly mechanism and cryoEM structure of RecA recombination nucleofilaments from Streptococcus pneumoniae

    Get PDF
    Abstract RecA-mediated Homologous Recombination (HR) is a key mechanism for genome maintenance and plasticity in bacteria. It proceeds through RecA assembly into a dynamic filament on ssDNA, the presynaptic filament, which mediates DNA homology search and ordered DNA strand exchange. Here, we combined structural, single molecule and biochemical approaches to characterize the ATP-dependent assembly mechanism of the presynaptic filament of RecA from Streptococcus pneumoniae ( Sp RecA), in comparison to the Escherichia coli RecA ( Ec RecA) paradigm. Ec RecA polymerization on ssDNA is assisted by the Single-Stranded DNA Binding (SSB) protein, which unwinds ssDNA secondary structures that block Ec RecA nucleofilament growth. We report that neither of the two paralogous pneumococcal SSBs could assist Sp RecA polymerization on ssDNA. Instead, we found that the conserved RadA helicase promotes this Sp RecA nucleofilamentation in an ATP-dependent manner. This allowed us to solve the atomic structure of such a long native Sp RecA nucleopolymer by cryoEM stabilized with ATPÎłS. It was found to be equivalent to the crystal structure of the Ec RecA filament with a marked difference in how RecA mediates nucleotide orientation in the stretched ssDNA. Then, our results show that Sp RecA and Ec RecA HR activities are different, in correlation with their distinct ATP-dependent ssDNA binding modes

    Reliability and accuracy of single-molecule FRET studies for characterization of structural dynamics and distances in proteins

    Get PDF
    Single-molecule Förster-resonance energy transfer (smFRET) experiments allow the study of biomolecular structure and dynamics in vitro and in vivo. We performed an international blind study involving 19 laboratories to assess the uncertainty of FRET experiments for proteins with respect to the measured FRET efficiency histograms, determination of distances, and the detection and quantification of structural dynamics. Using two protein systems with distinct conformational changes and dynamics, we obtained an uncertainty of the FRET efficiency ≀0.06, corresponding to an interdye distance precision of ≀2 Å and accuracy of ≀5 Å. We further discuss the limits for detecting fluctuations in this distance range and how to identify dye perturbations. Our work demonstrates the ability of smFRET experiments to simultaneously measure distances and avoid the averaging of conformational dynamics for realistic protein systems, highlighting its importance in the expanding toolbox of integrative structural biology

    Single-molecule FRET on its way to structural biology in live cells

    No full text
    International audienceSingle-molecule FRET is making stepwise progress toward the realization of its full potential: becoming the reference technique to monitor protein structural dynamics in live cells

    Studying GPCR conformational dynamics by single molecule fluorescence

    No full text
    International audienceOver the last decades, G protein coupled receptors (GPCRs) have experienced a tremendous amount of attention, which has led to a boost of structural and pharmacological insights on this large membrane protein superfamily involved in various essential physiological functions. Recently, evidence has emerged that, rather than being activated by ligands in an on/off manner switching from an inactive to an active state, GPCRs exhibit high structural flexibility in the absence and even in the presence of ligands. So far the physiological as well as pharmacological impact of this structural flexibility remains largely unexplored albeit its potential role in precisely fine-tuning receptor function and regulating the specificity of signal transduction into the cell. By complementing other biophysical approaches, single molecule fluorescence (SMF) offers the advantage of monitoring structural dynamics in biomolecules in real-time, with minimal structural invasiveness and in the context of complex biological environments. In this review a general introduction to GPCR structural dynamics is given followed by a presentation of SMF methods used to explore them. Particular attention is paid to single molecule Förster resonance energy transfer (smFRET), a key method to measure actual distance changes between two probes, and highlight conformational changes occurring at timescales relevant for protein conformational movements. The available literature reporting on GPCR structural dynamics by SMF is discussed with a focus on the newly gained biological insights on receptor activation and signaling, in particular for the ÎČ2 adrenergic and the metabotropic glutamate receptors

    Energétique et dynamique structurale des interactions des récepteurs des oestrogÚnes humains

    No full text
    Les rĂ©cepteurs des estrogĂšnes sont impliquĂ©s dans la croissance et la diffĂ©renciation des tissus reproductifs. Ce sont des facteurs de transcription inductibles qui se lient Ă  des sĂ©quences spĂ©cifiques d'ADN situĂ©es en amont du gĂšne rĂ©gulĂ©.En rĂ©ponse Ă  la liaison de molĂ©cules agonistes ils interagissent avec des protĂ©ines co-activatrices, conduisant par la suite au recrutement de l'ensemble de la machinerie transcriptionnelle. Une comprĂ©hension fine des mĂ©canismes d'activation transcriptionnelle par les rĂ©cepteurs nuclĂ©aires en gĂ©nĂ©ral nĂ©cessite, outre des informations structurales, la caractĂ©risation des paramĂštres Ă©nergĂ©tiques gouvernant ces interactions macromolĂ©culaires. Nous avons utilisĂ© dans ce travail la spectroscopie de fluorescence pour Ă©tudier les interactions in vitro entre les rĂ©cepteurs des oestrogĂšnes a et b recombinants purifiĂ©s, et leur ADN cibles, leur ligands et certains coactivateurs.Nous avons pu mettre en Ă©vidence les caractĂ©ristiques thermodynamiques de la liaison de ER Ă  un ADN fluorescent. Le rĂŽle Ă©nergĂ©tique jouĂ© par les diffĂ©rentes bases de l' Ă©lĂ©ment de rĂ©ponse a Ă©tĂ© quantifiĂ©, et le rĂŽle pouvant ĂȘtre jouĂ© par les ligands sur la multimĂ©risation du rĂ©cepteur a Ă©tĂ© mis en Ă©vidence. De plus, nous avons caractĂ©risĂ© les interactions entre ER a et ß entiers ainsi que le domaine de liaison de l'homme isolĂ© ( ERaHBD) d'une part, et des fragments des cofacteurs TIF1a , SRC-1 et TIF-2 d'autre part. Les expĂ©riences d'anisotropie de fluorescence et de spectroscopie de corrĂ©lation de fluorescence sur molĂ©cule unique conduites Ă  l'aide du fragment SRC-1570-780 marquĂ© par un fluorophore ont dĂ©montrĂ© sans ambiguĂŻtĂ© une stƓchiomĂ©trie de 1 molĂ©cule de SRC-1 par dimĂšre de Era. Nous avons Ă©galement dĂ©terminĂ© l'affinitĂ© de ces interactions en prĂ©sence de diffĂ©rents agoniste, et nous avons pu montrer l'importance de la structure de ceux-ci sur l'affinitĂ© d'interaction, indĂ©pendamment de leurs propres affinitĂ©s pour le rĂ©cepteur.MONTPELLIER-BU Pharmacie (341722105) / SudocPARIS-BIUP (751062107) / SudocSudocFranceF

    Synchronous, Crosstalk-free Correlative AFM and Confocal Microscopies/Spectroscopies

    No full text
    International audienceMicroscopies have become pillars of our characterization tools to observe biological systems and assemblies. Correlative and synchronous use of different microscopies relies on the fundamental assumption of non-interference during images acquisitions. In this work, by exploring the correlative use of Atomic Force Microscopy and confocal-Fluorescence-Lifetime Imaging Microscopy (AFM-FLIM), we quantify cross-talk effects occurring during synchronous acquisition. We characterize and minimize optomechanical forces on different AFM cantilevers interfering with normal AFM operation as well as spurious luminescence from the tip and cantilever affecting time-resolved fluorescence detection. By defining non-interfering experimental imaging parameters, we show accurate real-time acquisition and two-dimensional mapping of interaction force, fluorescence lifetime and intensity characterizing morphology (AFM) and local viscosity (FLIM) of gel and fluid phases separation of supported lipid model membranes. Finally, as proof of principle by means of synchronous force and fluorescence spectroscopies, we precisely tune the lifetime of a fluorescent nanodiamond positioned on the AFM tip by controlling its distance from a metallic surface. This opens up a novel pathway of quench sensing to image soft biological samples such as membranes since it does not require tip-sample mechanical contact in contrast with conventional AFM in liquid
    • 

    corecore